人工湿地(Constructed Wetlend)是20世纪70年代发展起来的一种污水处理技术,它是通过基质-土壤-微生物的综合作用实现对污染物去除,其中微生物是对污染物进行吸附和降解的主要生物群体和承担者,微生物在湿地基质中与其他动物和植物共生体的相互关系往往起着核心作用.由于其具有良好的污染物去除效果,可观的经济效益和广泛的适用性,已经引起**研究者的重视.
人工湿地中微生物的作用是净化污水的主要因素.微生物广泛存在于自然生态系统中,根据其生长温度特性可分为:低温微生物、中温微生物和高温微生物3类.低温微生物是指在较端低温环境下能够生长的微生物,它们具有*特的生理机制和特殊的代谢产物,主要分为嗜冷菌(Psychrophilies)和耐冷菌(Psychrotrophs)两类.前者是必须生活在低温条件下,即在0 ℃下生长繁殖,适温度不**过15 ℃,高温度不**过20 ℃的微生物,后者是能在低温条件下生长,在0~5 ℃下可生长繁殖,高生长温度可达20 ℃的微生物.在寒冷的冬季这些低温微生物在人工湿地生态系统中起着非常重要的作用,为人工湿地污水处理提供了崭新的应用前景.
国外对低温微生物处理污水技术的研究起步较早,我国从20世纪90年代初开始针对低温微生物资源(主要是南极及深海微生物)的初步收集、调查与研究工作.目前对低温微生物的研究与开发较少,力量还比较薄弱,其研究也没有达到一定的深度,有关人工湿地低温菌的研究更少.本实验研究了低温菌Pseudomonas flava WD-3在冬季接种到人工湿地后对污水的处理效果,并构建污水处理动力学模型,其成果必将为解决寒冷地区冬季人工湿地的污水处理提供理论基础和技术支持,对于解决我国日益严重的水污染和缺水的问题有着十分重要的意义.
这个致密的悬浮泥层是由污水中的污泥及混凝药剂形成的絮体本身组成的 。随着絮体由下向上运动 ,使泥层的下表层不断增加 、变厚 ;同时 ,随着过滤水力学原理形成的罐体的旁路流动,引导着悬浮泥层的上表层不断流入中心接泥桶 ,上表层不断减少 、变薄 。这样 ,悬浮泥层的厚度达到一个动态的平衡 。当混凝后的出水由下向上穿过此悬浮泥层时 ,此絮体滤层靠界面物理吸附和电化学特性及范德华力的作用 ,将悬浮胶体颗粒 、絮体 、细菌菌体等等杂质全部拦截在此悬浮泥层上 ,使出水水质达到三级处理的水平 。由于泥层是由絮体组成 ,致密度高 ,过滤效率远远**常规的沙粒层过滤 ;由于是处于悬浮状态的絮体泥层作滤层 ,其过滤的水头(阻力)损失非常小 ,所以动力消耗远远低于常规的砂层过滤 、微孔过滤 、或反渗透膜过滤;又由于过滤泥层是净化过程中由污水中的污泥自动补充添加 ,又自动被引走 ,*滤泥层自身在不断地更新 ,过滤泥层总是保持着稳定的厚度,而且总是保持着稳定的物理吸附和电化学吸附性能 ,因此能获得稳定的过滤效果 。而且完全免去了常规系统中必不可少的过滤层的反冲洗以及反冲洗带来的众多麻烦 。这种结构和原理与常规的三级污水处理的过滤装置是完全不同的 ,这里没有价格昂贵的反渗透膜过滤 、微孔过滤 、或活性炭过滤等装置 。所以 ,投资省 、动力消耗小 、运行*是SPR系统的必然优势。
SPR系统选用的絮凝剂 ,同时也是良好的污泥助滤剂 ,所以 ,系统后排出的污泥浆 ,其脱水性能良好 ,可以不另外添加助滤剂 ,就直接泵入压滤机脱水 。泥饼可以制成人行道地砖再利用 ,不会带来二次污染的问题 。它没有传统的生化法产生的污泥含水率很高、脱水性能很差的致命弱点。
本类型污水净化器曾开机运行处理过养猪场污水 、养鸡场污水 、煤矿矿井坑道污水 、生猪屠宰场污水 、高粱酿酒厂酒糟污水 、纺织印染污水、再生纸造纸污水和城市生活污水等等含有大量**污染物和氨氮的污水;也成功应用于陶瓷厂污水、墙地砖厂污水、大理石水磨抛光污水、洗煤污水、燃煤锅炉湿法除尘污水、石英砂洗砂污水等悬浮物含量较高的污水的净化和回用。 各地*检测部门测试了污水净化器进水和出水的有关数据 。测试报告单表明 :氨氮去除率可以达到85%,总氮去除率可达95% ,**氮去除率可达96% ,BOD去除率可达95% ,悬浮物的去除率则高达98.3% ~ 99.6% ,出水浊度达到3 度(3 毫克 / 升)以下。这是本净水系统在低投资 、低运转费的前提下所获得的出水指标 。 这是常规的物化法和生物化学法的一级 、二级处理系统都无法达到的 。 我听副官们说,在司行霈眼里,女人只有两种:能睡的伎女,不能睡的陌生人。哪个名媛跟他约会,那就等于告诉世人,她已然是出卖了自己,自甘堕落。”颜洛水道。颜洛水的八卦,让顾轻舟情不自禁对号入座,从而脸色惨白。看较快章节就上 小說 ānnǎs.
生物除磷为去除城镇污水中磷的重要方法,也是保护地表水环境、减轻或避免水体富营养化的重要技术措施近年来,有研究认为生物除磷不仅与聚磷菌(PAOs)有关,而且可能与生物絮体中的胞外聚合物(EPS)有密切联系.例如,Cloete等和方振东等检测到EPS中含有大量磷,认为EPS是污泥絮体重要的磷贮存库;研究认为,EPS磷含量的变化为厌氧减小、好氧增大,且SRT越大,EPS磷含量越大,EPS除磷量越大;韩玮等则研究认为,厌氧/好氧反应过程中EPS含磷量呈波浪形变化,EPS在生物除磷过程中主要起缓冲作用,是胞内聚磷合成的中转站;研究发现,不同SRT下EPS含量没有明显变化,但EPS的磷含量随SRT的增大而增大.上述结果说明,EPS对生物除磷过程有重要影响,但其在生物除磷中的确切作用还不清楚.
有研究人员采用STS法(化学分级)和31P-NMR检测到细胞膜外或EPS中存在聚磷酸盐(Poly-P),说明EPS参与了生物聚磷过程.Hill等(检测到以葡萄糖为部分碳源的SBR反应器活性污泥好氧吸磷形成的部分Poly-P位于细胞膜外.Jing等对该反应器进行了后续研究,发现细胞膜外的Poly-P与金属阳离子结合/络合.随着对生物絮体结构认识的深入,研究人员意识到上述现象与EPS有密切联系.张志**等观察到普通活性污泥EPS磷的主要形态为正磷酸盐(PO3-4-P),而生物强化除磷污泥EPS磷的主要形态为Poly-P.然而,上述研究仅对细胞膜外或EPS中磷酸盐的形态进行了分析检测,未深入研究生物除磷过程中EPS不同形态磷酸盐(包括正磷酸盐、低分子量聚磷酸盐和高分子量聚磷酸盐)含量的动态变化.